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1. Introduction

Let us consider the case, where a single, slotted, channel is being accessed

by a number of independent, identical, and packet-transmitting users. Let us assume

that feedback broadcast, per slot, exists. The limited sensing algorithms arise,

then, when the users tune to the feedback broadcast, only while they are blocked.

In addition to being practically appealing, the limited sensing algorithms are also,

in general, more immune to channel errors, as compared to the continuous sensing such

algorithms, for the same channel and user model. ,,

Limited sensing algorithms were first considered by Tsybakov and Vvedenskaya

[2], for the Poisson user model and for ternary feedback broadcast. The algorithm

in [2] induces a throughput equal to 0.384. Vvedenskaya and Tsybakov [3] developed

a number of algorithms for both ternary and binary CNC (collision versus noncollision)

feedbacks, and they studied the effects of feedback errors on their performance.

Georgiadis et al (4] proposed and analyzed limited sensing algorithms for binary CNC

and ternary feedbacks, with respective throughputs, 0.42 and 0.425. The latter

" authors also developed a limited sensing algorithm for ternary feedback [5], with

throughput equal to 0.4566, which is basically an interrupted version of Gallager's

algorithm [1]. We point out here that Ryter (6] modified the algorithm in (1], for

.. better behavior in the presence of feedback errors. The algortihms in [1] and [6]

require full feedback sensing, however.

In this paper, we consider the same model as in [5j, and we propose and analyze

a limited sensing algorithm that attains throughput 0.487, and induces uniformly

* good delay characteristics. The algorithm is also robust in the presence of feed-

back errors. We name the algorithm, Limited Sensing Ternary Feedback Algorithm

(LSTFA). We were recently informed that Humblet [7] provided an outline of the LSTFA.

2. The Model

We assume that a single, slotted, channel is being accessed by infinitely many,

V''.41V.
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identical, and independent packet-transmitting users. We model the cumulative .!!

packet arrival process as Poisson, we consider the case where the length of a

single packet equals the length of a slot, and we assume that a packet transmission

can only start at the beginning of some slot. We initially assume that the channel

is errorless; that is, errors can occur only due to collision, where collisions

correspond to simultaneous transmissions by at least two packets. We assume that a

collision results in complete loss of the information included in the involved

packets. Thus, retransmission is then necessary. We consider the existence of

ternary feedback per slot (emptiness, versus success, versus collision), and we assume

limited feedback sensing. That is, each packet tunes to the feedback only while it

is blocked. As a result, only limited sensing transmission algorithms can be

considered here.

Let time be measured in slot units. Let the integer, T, denote then slot

indices, where slot T occupies the transmission time interval [T, T+I). Let xT

denote the ternary feedback corredponding to slot T, where xT - 0, xT 1, and

xT = c represent respectively, empty, versus busy with a single packet, versus

collision slot, T. Given T, let us consider some nontransmitted packet, that arrived

in the time interval [T'-I,T'), where T' < T. Then, we denote by, ta, the exact

arrival instant, in [T'-Il,T'), of the packet, and we assume that the packet observes

the feedbacks, xi; T'-l < i < T-l, and it does not observe the feedbacks, xi; i < T'-2. -

Thus, given T, each nontransmitted packet, that arrived in (-c,T), has observed only .

part of the channel feedback history, xi; i < T-1, and it has observed at least the

feedback xTl-

3. The Algorithm ..

In this section, we describe a limited sensing algorithm, for the model in

section 2. At each point in time, the algorithm distributes the newly arrived and

the nontransmitted packets across three classes, A, 8, and C. Transitions in time Y'



li within or across classes and transmissions are controlled by the operations of the [':-

~~algorithm.

'] Class A contains those packets which cannot yet decide whether or not some

collision resolution is in process. Class 8 contains those packets which know that

i ~some collision resolution is in process, but do not know the time when it started. .

~Class C contains those packets which know that some collision resolution is in process, .;:

.. 4.

as well as the time when it started. All packets in class C can simultaneously decide

which arrival intervals will be chosen for transmission, while packets in classes A

and 8 can not. Packets in classes A and 8 act essentially identically. This will -. .

be evident from the description of the algorithm in this section. "

, Each nontransmitted packet follows the rules of the algorithm independently,

utilizing e set of parameters, R, A, LA TI, Tg and t. Among those, parameters) 6% +

t~A 3 9

R and A are subject to optimization for the satisfaction of the desirable throughput

- versus expected delay tradeoff, they are selected a priori, and they are system . ,

: : parameters. Parameters L A, T1, Tg and Z. are recursively updated, following the ,:."'

rules of the algorithm. Upon arrival, each packet initiates the algorithm inde-

I-.' pendently, following the rules below.

a. Initialization
Let a packet arrive at the time instant t where t [T'-l,T') . The packet

observes then the feedback xos and continuously observes all feedbacks from that

this point on, until it is successfully transmitted. At T' the packet moves to

&-

class I below, with initial values T pcT'-ts, and LA = 0.

..-.

b. Class I -:

an , All packets in class s act as follows: at s ly il. s l

. i~.1 If xT  1 , set T T+I, and ,-- ;

utii i ..t If xT 0 or x , , move to class 2, with t e r e

°S. L = i ,....,versus eetddlytaefThyaeslcdaproi anteyreytm

parameters Paaees1A
A ~ ~ ade r eusvlyudtd olwn h
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1.1.2 If xT - c, move to step 1.2
IfXT

1.2 If xT  C, set LA - 0, T - T + 1, and,

1.2.1 If XT - 1, move to step 1.1

1.2.2 If XT - c, move to step 1.2

1.2.3 If xT - 0, move to step 1.3

1.3 If xT  0, set LA - LA +1, set T- T+i, and,

1.3.1 If xT - c, move to step 1.2

1.3.2 If xT -1, move co step 1.1

1.3.3 If xT - 0 and LA< R + 1, move to step 1.3

1.3.4 IfxT-0 andLA-R+1, move to class 2, withL-L-1AA A

C. Class 2

All packets in class 2 act as follows: v.
Start with, Ts T, and, ,

2. L-A, TI- T LA

Then,

2.1 If T - (T -T 1) _<

2.1a) Set Tg 0 T g+ set T T + 1, and TRANSMIT

2.1.1 If xT - 1, the packet is successfully transmitted

2.1.2 If xT c, set LA 0,

2.1.2. a) Set t + L/2, and,

2.1.2.1 If T - (T - T < , move to step 2.1a)

2.1.2.2 If T (T -T) >Z, setT 4'T+l, setT T+, and,

2.1.2.2.1 If xT - c, move to step 2.2.3.

2.1.2.2.2 If xT - 0, set LA + LA+1, and,

If LA < R, move to step 2.1.2.a).

If LA - R, move to step 2.l.a).

2.1.2.2.3 If xT  1, move to step 2.l.a).

.', " ,.'
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2.2 If T - (T - T1) > £, set T + T +1, set T + T+1, and,

2.2.1 IfXT = 0, set T T LA LA+l and,

Lt2.2.1.1 If L < R + 1, move to step 2.

2.2.1.2 If LA = R + , set L LA - 1, and move to step 2.

2.2.2 If x = 1, set T T -Z,Tg g
[:'[ ~2.2.2 a) Set LA L ,set t A, set T1  T -Land,".'

2.2.2.1 If T - (T - TI) < £, move to step 2.1.a).2.. ) e +L+ 1 £=_. st CA A 1 +L i, tT T+I n, . .

2.2.2.2 If T (T T >Z, setT T +1, setTT+1, and,

2.2.2.2.1 If xT = c, move to step 2.2.3
.. 5

2.2.2.2.2 If xT = 0, or XT 1, set LA 1,

and move to step 2.

2.2.3 If XT 
f c, set LA =0,

2.2.3 a) Set /2

2.2.3 b) Set T + 1, set T T T + 1, and,

2.2.3.1 If x' = c, move to step 2.2.3 a)

2.2.3.2 If xT 0, set L + LA + 1, set Tg T , and,A A g g

2.2.3.2.1 If LA < R, move to step 2.2.3 a).

*2.2.3.2.2 If LA - R, move to step 2.2.3 b).

2.2.3.2.3 If LA > R, set LA + LA - 1, and move to step 2.

2.2.3.3 If xT = I and LA R, set T T -Z, and move to stepT.,g g ,.-
2 .2.2a).

2.2.3.4 If =1 and LA # R, set T T T + 1, set T T T + 1, and,
g g

2.2.3.4.1 If x= c, move to step 2.2.3.

2.2.3.4.2 If xT  0 or = 1, set T T - Z. set

L 1, and move to step 2.
A

In figures 1 and 2 we present the flow chart of the algorithm. We observe that

the storage requirements are reasonable, and that only seven parameters are maintained

and updated. Among them, the parameters R and LA are integers, and as we will discuss
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in the next section, they correspond to numbers 6f slots.

4. Qualitative Properties

In the description of the algorithm, class 1 reflects the operations of packets

in classes A and 8, while class 2 reflects the operations of packets that are placed

in class C. The algorithm basically selects arrival intervals for transmission. Let

us call examined, arrival intervals that have been resolved by the algorithm. The

parameters used by the algorithm are then interpreted as follows:

R: An upper bound to the number of consecutive empty slots allowed, during
the resolution of some initial collision, where R>l. By design, no more
than R such slots are allowed. Thus, when packet7 observe R+l consecutive
empty slots, they know. that there is no collision resolution in process
(step 1.3.4).

T: The time elapsed from the arrival instant of the packet, to the current
time.

L The number of slots containing packets from class A, from the arrival
instant of the packet to the current time. If the slot within which the

packet arrived is a slot as above, then it is included in the number LA

Tg: The time elapsed from the arrival instant of the packet to the current
time, minus the examined interval after thi- above arrival instant.

4: The total length of the arrival interval that is transmitted in the
current slot.

A: An initial arrival interval, that represents a design parameter.

T: The time length between the arrival instant of the packet and the ending
point of the most recent arrival interval currently chosen for trans-
mission (Figure 3). All the packets in the arrival interval that
corresponds to the length T1 belong to" class C.

From the operation of the algorithm we conclude that if xT - 1 and xT+l - 0 or

1, then either an existing collision is resolved at T + 1, or no such collision is

in process. Also, if a packet arrives within the tine interval [T-l,T), and xTl 0

or 1, then the packet moves to class A. If, instead, xTl - c, then the packet moves

to class S. The throughput of the algorithm can be as close to 0.487 as desired, if

the design parameter R increases. As R increases, and for low Poisson rates, the

expected per packet delay induced by the algorithm increases as well. Thus, the

..- 71.:



selection of the R value is based on the desired tradeoff between throughput and

expected delay. In the presence of feedback errors, as in [3) and [43, the through-

put of the algorithm deteriorates gracefully, and no deadlocks occur (in contrast

to the algorithm in [1]). That should be clear from the operational characteristics

of the algorithm. We point out that the events represented by steps 2.2.3.2.3,

2.2.3.3, and 2.2.3.4.2 for xT 0, in the description of the algorithm, can only

occur in the presence of feedback errors. Also, for R = 1, binary (collision versus :: -.

noncollision) feedback suffices, with minor modifications in the algorithmic rules.

5. System Stability

Let us now consider the evolution of the algorithm, as seen by an outside

observer. Let T measure time in slot units, and let the algorithmic operation start L.

at T 0 0. At T - R + 1 there will then be, R slots containing packets from class A,

and one slot containing packets from class C. Let us define the variables, Tn , dn-

L (A), and I, as follows:n n

T R+
0

Tn : The first time after Tn-l, such that there are -no slots containing
;n>l packets from class 8.

Dn : The total length of arrival intervals containing packets from class
;n>O C, at time Tn; where d - 1.n 0

Ln(A) : The number of slots containing packets from class A, at time Tn.
;n>O

I XTU-1
n11 if - 0

n-1
The triple, (Dn , L (A), I n ), describes the state of the system at time Tn, as

nn nan

induced by the operation of the algorithm. The sequence, {S} {(D, Ln (A), In

is a Markov chain. That is, given S n , the statistics of the states Sn+k ; k > 1

are fully determined, and they are independent of the st.tes Snk; k > 1. The above

is easily concluded from the operation of the algorithm, which also gives:

1 < Ln (A) < R + I ;Vn>0 (1)

nd
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d > 0 ; n > 0 (2)

Sk -A ;k, M Mi 0 or l, M <

i=0 a,.:.

; where N denotes the set of natural numbers.

From expressions (2) and (3), we conclude that the values of D are denumerable.
n.

In combination with expression (1), we then conclude that the state space of the

Markov chain,. (Sn, is denumerable. It can be easily seen that the state,

So = (1, R, 0), is accessible by any state in (Sn); thus, the state space of the

Markov chain, {Sn}, has at most one minimal closed subset. Let us denote by V, the

set of state values, (d, 1(A), I), that are accessible from the state, So = (1, R, 0).

That is, given (d, t(A), I) in V, there exists some n, such that,

Pr{S = (d, 1(A), I)ISo - (1, R, 0)) > 0•U

The Markov chain, {Sn}, is then irreducible on V. As it can be easily shown, {Sn-

is also aperiodic on V. Let us now define a set, H, of random variables, such
n

that,

* H -T T4

Given n, given a state value, (d., t (A), I ), such that, d > A, an arrival interval
h n nn

of length A is then chosen by the algorithm for transmission. The statistics of the

random variable H in (4) are then similar to the statistics of the number of slots
n

needed, for the resolution of an arrival interval of length A by the algorithm in

[1]. In appendix B, it is shown that the following holds.

E{lId > A) -E{HId A) < ;V A<® (5)

Given n, let now the state value, (dn , , (A), In), be such that, d <A. Then,n n nn
no packet knows the value d, and each packet in class C selects the algorithmic

n



I9

Parameter £, equal to A. In appendix A, we show that the following relatioship.

holds, however.

Considering Markov chains with stationary transition probabilities, we,. -.o

now express two helpful theorems and a corollary. The proofs of the theorems are

included in appendix A. The corollary is a generalization of theorem 9.1a in (8],

while theorem 2 is a consequence of theorem 9.1b in the same reference.

Theorem 1

Let {Fn } be a Markov chain with denumerable state space F. Let g be a nonne-
n

tat" a scalar real functional defined on F, such that, g(s)<**; V seF. Let there exist

constants e0 and O<M< o , and a set A'ZF, A#F, such that,

i) 0 < sup [E{g(F )IF ° s} - g(s)] M
seA

ii) E{g(Fl ) JI 0-s}- g(s) <-e ; v seAc

Then,"

t1m'fPr({FA1o,,t)> £ Vtc ..F
_ n 0 - We~4

From theorem 1, we cau directly express the following corollary. IPT

Corollar 1

Let {Fn } be an irreducible Markov chain with denumerable space F. let g be
a functional as in theorem 1, and let conditions i) and ii) in the latter theorem

be satisfied. Let in addition the set A in theorem 1 be such that, if {F} is
n

nnpositive reccurent, then, -

i) t r{ e A o  < ; for some i in F.
_- n£.IF :E.

; where e, and M are as in theorem 1.

Then, the chain {F n  is positive recurret

4S :.,;'. ,.. ;.:;,' ;.i : .,:.,.,, .:', '.5 :.':.'..'.:' . ,.-. ';. . .','..'..'..';.'..'..-'.'. ,-..'..'..,/ . :. ,..:,. :.'/ : .. .! ... ., .,,,,.-" ;, '...:,; ,,. .2
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Theorem 2

Let {F be an irreducible Markov chain with denumerable state space F. Let g
n

be a nonnegative scalar real functional defined on F, such that, g(s) < V ; s e F.

Let there exist > > 0, and a set ACF:A#F, such that: ..,

i) E{g(F )IF"1 - g(s) > 0 V s8 Ac K
F1 0 - -

: ii) E{ jg(Fl)-g(Fo) IF -ao) <  V a e F ;

iii) g(s) > sup g(t) ; V s C Ac
tcA

Then, the chain {F n  is nonpositive recurrent.n

Let us now consider the Markov ehain {S I induced by the algorithm, and let us

consider the following functional,

g((d, ,(A), I)) d + eL(A) (7)

Let us define, sn - (d, t (A), In) and A = min(dn, A). An arrival interval
•n n n n n

of length A is then chosen by the algorithm for transmission, at time T • At timen n
Tn+I, the algorithm examines a subset, 6 of A for transmission, and at the same
T:,l. n n P

time the remaining packets, and those that arrived in the interval [T, Tn+1) are"n h u

either-in calss C or in class A. Therefore, denoting by h the value of the
n

variable H in (4), and considering (7), we have,

g(s g(s 6 + h (8)" g(S~n+l) "(n) -n nt.,...

Let us define the following set of states:

A - {s e V a: s (d, Z(A), I) : d < A} (9)

We can then express the following lemma, whose proof if in appendix B.
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Lemma 1

There exist constants, e > 0, 0 < M < , such that condition i) in corollary 1

is satisfied, for A as in (9), and for F ; n >.0 substituted by S ; n > 0.

Using the quantitites, A and Hn , defined earlier, using the functional g(.)

n n

in (7) and the expression in (8), using the set A in (9) and the result in lemma 1,

using theorems 1 and 2, we can now express the main theorem of this section, whose

proof is in appendix B. 1-2

* Theorem 3

The Markov chain {Sn } is positive recurrent, if and only if:

E{6 01So - (A, t(A), I)) > E{Ho So = (A, t(A), I)}

The inequality in theorem 3 provides the necessary and sufficient condition for

zthe stability of the Harkov chain {S 1. We will now show that the satisfaction of L
n

this inequality also g'iarantees the existence of a steady-state distribution, for

the per packet delay. Let Wn be the random variable that denotes the delay of the

nth successfully transmitted packet. We can then express the following theorem, whose

proof is in appendix B.

Theorem 4

.f, E{6 01So = (A, Z(A), I)} > E{HoIS o = (A, .(A), 1)}

* Then, there exists some proper random variable, W0 (that is Pr{W <001-1), such
10

*: that,

Pr{W_ <b b t} Pr{W < b} ;V b e R, V t e D

n~L --.. ,
n+00

Due to theorems 3 and 4, we conclude that the inequality in theorem 3 basically

expresses the condition for stability of the LSTFA; it thus provides the algorithmic

*.2 ." *. . . .'"-***,
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throughput, for every given system parameter value, R. Given the system parameters,

A and R, the throughput, )*(A, R), of the LSTFA is the maximum Poisson intensity of

the input traffic, that maintains the condition for positive recurrence in theorem

3. Given the system parameter R, the throughput, X*(R), of the LSTFA is then defined

as follows.

A (R) - sup A*(A, R) X*(A*, R) (10)

For various R choices, we computed the throughput, X*(R), in (10), using the

recursions in appendix B, in conjuction with tight lower and upper bounds on the

quantitites. in theorem 3. . In table 1, we list the values X*(R) - X*(A*, R)

and A*, for various R choices. The throughput, A,*(R), approaches the value 0.48711

in [1], as R increases. We point out that for R - 1, the algorithm can be modified

to operate with binary (collision versus noncollision) feedback, maintaining the -.*,1

throughput 0.4493, versus the throughput 0.429 in Capetanakis' algorithm, and the

throughput 0.42 in [4].

6. Conclusions

In this paper, we presented a synchronous limited sensing random access

algorithm, for the Poisson user model, and for ternary feedback. The operational

characteristics of the algorithm are controlled by a system parameter, R, that takes

positive integer values. The throughput of the algorithm approaches the value 0.48711, '

as the value of the parameter R increases. As the latter value increases, however,

the expected per packet delay at relatively low Poisson intensities, and the sen-

sitivity to feedback errors increase as well. This property should be qualitatively

clear, from the description of the algorithm. The choice of the system parameter, R,
".. : ..

is thus based on a tradeoff, between throughput and expected delays at low Poisson

rates as well as error sensitivity. For relatively small values of R, the algorithmic

throughput is close to the limit 0.487, while the delays at low Poisson intensities

are simultaneously acceptable, and while at the same time the algorithmic throughput

'' *•:
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deteriorates gracefully in the presence of feedback errors (in contrast to the

algorithm in [1], that then reaches deadlocks). For R - 1, the algorithm basically

operates with binary (collision versus noncollision) feedback. otencd ly

We studied the stability properties of the algorithm analytically. We used

simulations, hovere, to initially derive quantitative results on the induced delays*

and on the behavior of the algorithm in the presence of feedback errors. In this

paper, we do not include the latter results, for two reasons: First, because the

delays, as functions of the system parameter R, behave as explained in the above

paragraph, and because the response to feedback errors is qualitatively as that of

the algorithm in [4]. Second, because we prefer analytical methods, and we are

presently in the process of developing the appropriate analytical tools, for

studying the delay characteristics of the algorithm. I

-..- L

-" I : , -?
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R *R A A~x(R) A

1 .4493 1.16 2.58

2 .4793 1.24 2.60

3 .48529 1.262 2.60

4 .486 1.24 2.6

4 .4876 1.266 2.60

6 .4870 1.266 2.60

7 .48711 1.268 2.60 -

Table 1 
I''

Throughput

LX"Y~
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Appendix A .

Proof of expression (6)

Let d - d < A. Let us then assume that there are q packets contained in d,

nand there are a packets contained in A-d, where m > 0 and q > O. Let us assume that ,...

the whole interval A is chosen for transmission, and let us then denote by L(d, m,q)

the number of slots needed to resolve the initial collision. From the operation of

the algorithm, we then conclude,

L(d,mq) > L(d,O,q), a.e.

We note that L(d,O,q) is identical to the number of slots needed to Tesolveta

collision, when dn d and there are q packets contained in d; thus,

E(L(d,O,q)} = E(Hn = d, q.packets in d) ; d < A (A.1)

Also,

E{Hnd - A} d E{ d I A, k packets in A} Pr{k packets in Al

k-O

S k

= ~ E(HId = A, k packets in A, q packets in dl.

k-O q-0

- Pr{q packets in dik packets in A, d n  Al.

-'Pr{k packets in A)

.. E(L(d,k-q,q)}Pr{q packets in dik packets in A, d n A)

k-0 q-0

Pr{k packets in Al

, E{L(d,k-q,q)}Pr{q packets in dk packets in A).

q-0 k-q

. Pr{k packets in Al >



A.2 4.

P.CO 00

SE{L(q,O,q)J E Pr{q packets in dik packets in AIPr~k packets in Al
qinO k-q

0

(due to A.1)- E{ EId -d,~n q packets in dl Priq packets in dl

-E{HjId -d < Al

Proof of Theorem 1

Let us define,

P We{ sI eaiyfidb (A.2)

Let us define,

> 0 e t F (A.5)
nsts

n-K*

Let us temporarily assume that (A.5) is false. Then, there exist some state

t e F, a 6 > 0, and some <6 Go, such that,

n nt

seF

Expression (A.6) implies that,

Ej(n+)F 0  ) E'L6F E IJ - t) - 6 V n > Ns

and thus,

7-7

.4~ ~~~~~~ ~~~ . .. . .. .-- .4 .. 4 * b . . . . . . .
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E{g(FN +k)IF 0 - t < E{g(N6) IF0 - t} - k 6 ; V k > 1 (A.7)

But due to (A.3) we have, E{g(N6) 0 - t} < c ; thus, (A.7) gives,

tim E{g(FN g ) 0  t} - which contradicts the left part of (A.3). Thus,
k~oo 6
expression (A.5) holds. Using (A.5) and the conditions in the-theorem, we can now

write,

n2~ ~t8 2  n It5L. n ~ ts
sF seAC seA

< - Pr{F e AcF 0- t) + M Pr{F AIF tj-

- - + (c4+) Pr{% F AI o  t,

~0 < 1  () P < e +(e+HM)Z Pr{F C AF 0 -t
n tsK n4C n

-. - .seF

+0 < ~< UmPrjF C Al F0  t)

Proof of Theorem 2

We will prove the theorem in a number of steps. We first state and prove

theorem A below.

Theorem A P"

Let {Fn} be an irreducible and positive recurrent Markov chain, with stationaryn

transition probabilities, {7r},and with denumerable state space F. Let g be a

positive scalar real functional defined on F, such that, g(s) <Ca ; V s e F. If

there exists, 0 < <Ca , such that:

E{lg(Fl) - g(Fo)cI F s} <B; vs e F (A.8)

Then,

F,{g(F l) - g(Fo) Fo - si 1rs - 0 (A.9)

seF

... ,

4.. *A A> P S .4 P .,~ t. ~ .. p.-- .:. 2
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Proof

Let there exist some state t in F, such that, Pr{S0 - t} - 1, and let us define,

0 (s) Eg( - g(F)IF s} (A.10)

Let T ; Z > 1 be the time of the Zth visit to state t. Then, since {Fn} is

positive recurrent, we have,

E{t I < CO(A.11)

and due to (A.8),

10_(s)I <8 V s eF (A.12)
nr

Thus,

E % i(Fn)} -  < (A.13)nnO

From (A.13), and from theorems 2 and 4 in [9], we conclude,

% (Fn)

n-0O)7 (A.14)

E{T10E1T seF 1
Let us define, 7

k

Yk [ E{g(F )IF 1) g(F) k k> 1 (A.15) ~
ni. n n-) 

.

*k - (n(F) k >  (A.16)

n0l

Then,

Z k (Fk) -g() + (A.17)

77!7



L A. 5

But, as in the proof of theorem 1, we have, E{ = t) <Ca; V n, and

E{g(F)IFn1 , Fn_2,..,V? * {g( ) IF1 } , due to the Markovian assumption. Thus,
• :. "the process 1YkI in (A.15) is a martingale with respect to the Harkov chain {Fn,

(p. 240, ex. b, in (10]). Alao,

E{g(F 4 1) -g( k)IFk } - Cg(Fk+1 ) - g(F k )ii I

?E{ -Yk+ Y .- O ... J.. <  D+ E{lg(Fk+ ) - g(Fk) I IFk  - -9,l
-kj k(,

-0+ 1{ S(FV4 1) - Sk F < 20 V k >1 (A.18) I.- W,..

Now, T is a Markov tiu with respect to {Fn}. Thus, in conjuction with (A.11)
1 n

and (A.18), we concltde Ccorol. 3.1, p. 260 in [10]),

E.YTI = - E"g(F)F 0 - E{g(F 1 )Jj -0

And,

E{ZT1J I E{g(FT1 ) <t) +YTII - g(t) g(t) + E {YT - 0 (A.19)

From (A.14) and (A.19), we corLclude, 0 0(s)rs 0 O, that proves the theorem.

~sEF

We now prove the fol.2owLmg lemma.

Lemma A
Let {F be an irreuclifJule Markov chain, with denumerable state space F. Let

g be a nonnegative scalar reaL functional defined on F. Let there exist some

0 < 0 < 0a and an element -r im F; TOF, such that,

4. .~ ~ ...--E"
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a) E{g(F l) - s} -g(s) • 0; Vs se F : a tT

--

Then, the chain, f}'is nonpositive recurrent.

Proof
Let us assume that {F} is positive recurrent. Due to theorem A, in conjuction

with property b), we then conclude,

., E{g(fl)-g(F 0 ) IF0Us} ir a 0 (A.20)

; where, {7r}; %r > 0, V SF, are the stationary probabilities of {Fn}.

But,

SE(g(Fl)-g(F0)F 0ms
)  I nor5 -" -g(F 1)-g(T)oF0 -T} +

+ E{(g(Fl)-g(F0 )jF0 7s} (A.21)

seF
SOT

And, for (Ps} : irs Ps ir.,

tcF

E{g(F1)-g()IFOT) " [g(,-)-g(T) ]PT (A.22)

teF

Since the chain {F ). is irreducible, there existssome t:tzF, t#'r, such that,n

P > 0. Due to that, in conjuction with condition c), we obtain,

*EFg(F )-g(T)IF mX) > 0, where w > 0 (A.23)

Due to condition a), we have,

.V
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seF

E{s(F 1)-g(F 0 )IF0 .S} Wr > 0 (A.24) f.2

From (A.21), (A.23), and (A.24), we conclude,

E{s(Fl)-g( o) J~o- s} Irs > 0 (A.25)

(A.25) contradicts (A.20); thus, the chain {Pnt is nonpositive recurrent.

Let us now refer to the statements in thcorem 2. Since the Markov chain {n

is irreducible, there exists some state T in the set A, and some state T1 in the

set Ac, such that,

P > 0 (A.26)

Let {F'} be some Markov chain with state space, F' - Ac L , and with transi-
n

tion probabilities, JP'ts, given as follows: F',

Pt ; s Ac  i

PI,

toL

; where {Pt1 denote the transition probabilities of the chain {F..,-'4"
tr, n

Let us now define,

P - min{n > 1 :F "siFo8t"

* tA " min{n > 1 : FneAIFo-t} (A.28)
'SA

P' min{n > 1 : F'-sIFou-t.Sn on

Clearly p -<  a.e. Also, U
4..N
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K ~ ~Prip' l

&eA (A.29)

Pr~p I -a) P ~' Pr{p n-11 ;n> 2
tT L ~ts ST_

seA

But the recursions in (A.29) are also satisfied by the probabilities Pr.{p "'n) .

V ~Thus, P'T< T stochastically, and to prove theorem 2, it suffices to show that, -

} - ~(A.30)

Indeed, if (A.30) is true, then also Ep I-0:ad( ste opstvTT n

recurrent. Let us now define the following functional, g', on F':

g(s) s eA c
g'(s) -(A.31)

SUP g(t) 8 T

teA

We will prove that the functional in (A.31) satisfies the following properties.

d) Ac
d)E{gWF)I ass} g'(s) 0 VseA

e) E{Ijg'CF1)-g'(F',) I F-s) < V s e F

f) g'(B) > g'(T) V s C Ac

Property f) evolves from condition iii) in the theorem. Property d) 1holdst

because due to condition i) in the theorem, we haive,

V ee;E{g'(FI)IFI-) m s 1t ~ S'T t g'S

E g(t) Pts + (sup ga)M %t - g(s) 1 E g(t) Pet- g(s) -L

teteA teF

-E{g(F ) IFOMsI g(s) > 0

To prove property e), let us first consider the following derivations:
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For s C; , i A E')g.lg': s) PF+)gt(T +I ..g'- s)I'-

< Ig(t)-g(s) iPts- E{Ig(F1 )-g(F0I jo-s} < 8 ; since

teF.

g(s) > g'(T) > g(t) >0; V t C A, Vs c A, and thus,

ig'(T)-g(s)I < jg(t)-g(s) ; t £C A, Vs : AC. (A.32)

Also,

E{lg'(F')-g'(F):I -Fo'- " ig(Z)-g'(T)I Pt < IZC1>-g(: > I". <

< I:g()-g(Tr) Pt7 Ef{ig(Fl)-gcoi)I jOa TI < ( (A.33)

teF

Expressions (A.32) and (A.33) prove condition e). For the Markov chain {F },

the state T is accessible by any stat3 in Ac C F. Let C denote the set of all

states in F that are accessible by the state T, where C CF. Then C is an essential

class; that is all states in C communicate. The set C is thus closed. Let us now

denote by {F"} , the restriction of the Markov chain. {F'} on C. Then, properties
ni n

d), e), and f) hold trivially for {F"}, where TrC due to (A.26). Since the chain
n

{Fn} is irreducible, it is also nonpositive recurrent, by lemma A. Thus, (A.30)

holds, and the proof of theorem 2 is now complete.
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:5 Appendix B

Proof of Lemma 1 2

Let us define the following set,

B -a e V : s-(dL(A), I) : d integer, 0 < d < R+1J (B.1)

Then,

Pr{S+ C BIS-i Pr{3n+1  BSn-S Pr{Sn=SSoai}

seV

> ' Pr{S C Bl- Pr{Ss ISo-il (B.2)
-~ n+1 "I~n5' n

seA

We now observe that if s - (d, t(A), I), d < A, and there are no packets in A,

then S e B. Thus,
n+1

Pr{S e BISn-(d, B-(A), I), d < A} •
n+1 n

• Pr{O packets in dISru(d, 1(A), I), d < Al -

-Ad -AA /"

,,e >e (B.3)

From (B.2) and (B.3) we conclude,

Pr{Sn+ 1 s o=i. > e-M r Pr{Snr}Somil -XA

PrS B I >e Pr{S eAjs0-il (B.4)

4,, . 4- .

But the set B is finite; thus, if {Sn} id nonpositive-recurrent, then,

In

Pr{S+ L B ISo=il + ;0 i LV (B.5)

From (B.4) and (B.5) we then conclude that if tS I is nonpositive recurrent, then,

Pr{S AlS n- 0ViCV (B.6)
n+1 o -__
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The proof of the lemma is now complete.

Proof of Theorem 3

Considering expressions (8), (5), and (6), we obtain,

E{Ig(S 1)-g(S 0) I sons) E{I-6 6 + R 0Isons). <

< El{6oSo-l + E{IHOI So S }<

.A + E{H0Id 0 A H <co; V se V (B.7)

;since0 < < A ae.
0-

Due to (B.7), we easily conclude,

E{g(S 1)Ijso as  - g(s) < M < ; V a e V (B.8)

Part 1: Let us now assume that the following inequality holds,

E{6 o I So(&,,e(A), 1 >E(H ISo(At(A),T) (B.9)
00

Then, due to (8), and for A as in (9), we have,

E{g(Sl)Is -s - g(s) - - { oSo-(A,(A), )) +

+ E{H 0 So-(AL(A),) - - < 0; V s Ac (.)

But the conditions (B.8) and (B.lO) are as those in theorem 1. Then, in conjuc-

tion with lemma 1 and corollary 1 we condluce that if (B.9) holds, then the Harkov

chain (Sn} is positive recurrent..

Part 2: Let us now assume that the following inequality holds,

E{6oJSo(A,t(A),I)J < E{H_ IS -(A,L(A),I)} (B.11)
0 ~ 00

Consider the set,

N- L

*.-...
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Bc  {sCV: g(s) > A+R+1} (B.12)

Then, we necessarily have, s=(d,Z(A),I); d>A ;V seB Cand due to (8),

E{g(sI) S0-sj - g(s) - -E{E01S 0-(A,t(A),I)1 +

E{H0IS0-(A,Lt(A),I)} > 0 ;V seB ~ (B.13)

Also,

g(t) < A+R+l ; ¥ teB + sup g(t) < g(s) ; V seBc (B.14)
tcBConditions (B.7), (B.13), and (B.14) are as the conditions in theorem 2, with

set A In the latter theorem being substituted by the set B, where BC is as in (B.12). 1

Thus, if (B.11) is satisfied, then the Markov chain {Sn} is nonpositive reccurent.n
Parts 1 and 2 above complete the proof of theorem 3.

Proof of Theorem 4

If the condition in the theorem holds, and due to theorem 3, the Markov chain

{S n is positive reccurent. Let us now define,

SO= (0, R+l, 1) - to

A A
0, pmin{k : S Mt0}  - n+Pn (B.15)f= +k 01 €' n+l ::n:-:'

A A
TinT Tn n ln " Tn - (+l)

The instants, {Tn, are thus such that, there are no slots containing packets

from classes 8 and C, there are R+I slots containing packets from class A, and the

last slot just before each of those instants contains a single successfully transmit-

ted packet. The interval, (T Tn), contains all the R+I slots, which at time T'.l~ n}  ; ' :

contain packets from class A. Since the Harkov chain, {S is positive reccurent,

n
the random variables, {p are i.i.d., with finite expected value. Let us define,

np -- ,. Pn- 1

S= +l -n Ho+i ln+l T, n(B.16)n n+ ~ '""=~~~i=O Cn k " Tln - l '

;where H is given by expression (4).n
Then, the random variables, {n}, are i.i.d., and,

n0.71

X7. C.

*' *. ° -
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P -1 p -1

'H~~~~~~ - ' s' s ' gS g
1I imO 0O ' O

-.-0 16-pAO<o<o

Lhen, snwdeoeb tenme of packets that thri e 

Tethe radmvrals M aei.i.d., and as in [12] it can be shown that,

n

Sic 0;e thsphritiuto fH saeroi.Tkn n o cuexpesio {W

sne{ spstv recaaie wt epcut the vaMrable, itm is easl +kncude tha0 'tl,s
nn

proper random variable; thus, {M, is then a delayed renewal process, and the theorem

also holds for andoto

Recursions

Given A and R, let us define the sequences {Lk an and the quantities

k as follows,
pi

A 00D A k packets in Al

A E{6oID -.A, k packets in A)

kA'k -k P )2 (B.19)

;where H0 and D0 are respectively defined by (4) and (3), and where 6 is7"0 0 0
as in (8).

From the operation of the algorithm, we then easily derive the following recursive 
1

.

expressions.

.......................................
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0  1 .

(B.20)

tk! kL k-1 *P . kpo p1  0 < < R-1 l > >

Lk (P0L _ k~>

-++ 
;w.p.(p k)Zp;O<<-

tl+R+Lk i"w. p.,

k 1
Qo "Ql "'%

t (B.21)

2-l_ (P p <R-2 - 1 2 1 p o) Pl 40

Qk A 2-J 2 -1-iQk ;w°P. (Pk )t P k 0 < t < R-1, k > i > 2

;k>2 i-i2;:

R
,k R

A ~ + LQk 0)p

n

Defining x= 0; if n < k, and respectively from (B.20), and (B.21), we

i-k

conclude,

Pk Lk

k 1 k R k +.'."
= 1 + [l-p k k + + Lk + Li 2

0 0 0i=2 ,1> ,.

L L1  1 (B.22)
0

t1 -2 ( 2[2-p] -2 ... kP }Qk
k-lk 1 -pkR k k k k"

[2-pb0 1-2 0) 1 PA 0 ; k > 2 + P Q

(B.23)
Qo Q1"'
~0

::. . . .*...
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Note that for R - .*, the sequences, {Lk} and }Qk1, are exactly as in Gallager's

algorithm [11, [11].

If we put Qk AQk , then we can easily see that Q catisfies the following

recrusions:

{ -R k R -2[ kl[1 2 Rk]k-- (P [1-2- "Qk

k-l
k [2p)[--R(Pk) ]Pk +  P + Pki k '''

-(2-p 1[1-2 p+p+p Q' +1.E PilQ ;k >2k-1

(B.24)

Q0 Q

From (B.22), we can easily conclude by induction, that,

'< Lk <3k; V k > 1 ,V R >, N (B.23)

Therefore,

0 < E{/D0A}- pLkr(k Packets in A) < 3Xi A+l < c;VR, < A < G, V ReN (B.26)

k=O

This proves the inequality in (5).

Formula (B.25) permits us to develop tight lower and upper bounds on E{H 0/%'-} as

follows: From (B.22) we can directly compute a finite number, M, of terms of Lk.

Then, by using (B.25) we have,
M.:M

H ~ k H ~k-AA (...

Ht(A) Lk e --- - < E{ffo/Do-A- < Lk ea Ik! +

k=0 k-O

"_ Ak "-
+ 3AA -3 F, k e= Hu(M) (B.27)- k i u . _

k-O

Similarly, since 0 < Q < 1, we have,
k

: 'j' "

-. * -'--
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S ()AYI <X E{60/D0"} -A) <',

6L~Au.A Qk~ k1 - 0
k-O

r 1e)k .k
)~A~Q~~**~A +-XAA(AA)

< eQ - + -1 -  6u(MU) (B.28) .,-.'
h.dkki e 1 uj~

k-O k-O

)E{6 /D -A)Now, the condition, D- > E{/D0-A, is equivalent to, f(A) > A
~ 0 0 0 '' EtK0/D -AI

and therefore, the throughput of the algorithm is

A*(R) = sup f(AI), where A

But

t .'(A) 6 (Ai 6z(A) 6(A)
_< f( < UP < *(R) ! sup 1 (B.29)

Sul A> 1 - (ulR(A) A) > Hi> (A)

Based on (B.29), we give in table 1, the values of A*(R), A* A* X *

different Rs. In the computation we took M - 25. The values of X (R) in the. table are

correct, up to the digit referred to in this tible.

.eV

-.- * *. . . .. . 1 * * .*. -* ;
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